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Time-resolved photoluminescence spectroscopy has been used to investigate carrier decay dynamics
in a InGa,_,As; (N, (x~0.03,y~0.01) epilayer grown on GaAs by metal organic chemical
vapor deposition. Time-resolved photoluminesceflee) measurements, performed for various
excitation intensities and sample temperatures, indicate that the broad PL emission at low
temperature is dominated by localized exciton recombination. Lifetimes in the range of 0.07-0.34
ns are measured; these photoluminescence lifetimes are significantly shorter than corresponding
values obtained for GaAs. In particular, we observe an emission energy dependence of the decay
lifetime at 10 K, whereby the lifetime decreases with increasing emission energy across the PL
spectrum. This behavior is characteristic of a distribution of localized states, which arises from alloy
fluctuations. ©2000 American Institute of Physid$§0003-695(00)03702-5

Recently, the quaternary InGaAsN alloy system has atfinger and cooled by a closed-cycle helium refrigerator. The
tracted a great deal of attention due to its potential applicasample was optically pumped with 580 nm laser pulses of 10
tion in devices such as next generation multijunction solaips width and 9.5 MHz repetition rate, and a surface pump—
cells and optoelectronic  devices for  optical surface emission geometry was used. PL emission was col-
communications:’ The alloy is of fundamental and techno- lected and analyzed with a 1.3 m grating monochromator
logical interest because it exhibits an extremely large ban@quipped with a microchannel plate photomultiplier tube
gap bowing coefficientt{~ — 14 eV) between the IlI-N and used in a single photon counting mode. The overall time
lll-As binaries® The extremely large bowing coefficient resolution of the detection system is approximately 25 ps
permits the 1pGa,_,As,_,N, quaternary alloy to maintain With deconvolution techniques. ' .
lattice match to GaAs, with a wide range of tunable band gap ~ PL spectra acquired at 10 K for several different relative
energies smaller than the GaAs band gapferdy. Studies €xcitation intensities, varied over two orders of magnitude,
of InGaAsN solar cell structures with 1 eV band gap have@re shown in Fig. 1. The PL spectra have been corrected for
shown that the quaternary suffers from a short minority carfne spectral response of the monochromator and detector.
rier diffusion length?3 More recent work has found that sig- 1 N€ Peak positiorisolid line) and half-maximum location on

nificantly improved minority hole diffusion lengths may be the low energy sidecross are indicated for each of the
obtained by thermally annealing the InGaAsN after grovvth,em'ss'on spectra. It is clear from Fig. 1 that the PL spectrum
although minority electron diffusion lengths remain sHort exhibits blue-shift and broadening with increased excitation

In this letter, we report the results of time-resolved PL spec-!mens'ty' The low energy side of each of the spectra shown

: - - ; Fig. 1 is functionally very similar with a logarithmic slope
troscopy studies of an InGaAsN epilayer. This letter is one OF ) 1
the first investigations of the carrier dynamics within din(l)/dE] Of. approximately(9 meV) . The f‘”f“ (.)f the

INGaASN. low energy side of the spectrum suggests a distribution of

. . localized states with an exponential-like density of states
A 3-um-thick, InGaAsN epilayer was grown at a growth : . )
K ! priayer was grow grow (DOS).1° We attribute these states to local fluctuations in

temperature of 590°C by metal organic chemical vapor . . . : .
" o . nitrogen concentration since the magnitude, nitrogen concen-
deposition on a semi-insulating GaAs substrate and termi- .. D
. . - . tration dependence, and magnetic field dependence of
nated wih a 5 nmGaAs cap. Trimethylindium, trimethylgal- . ; . .
lium, arsine, and dimethylhydrazine were used as sourclnGaAs'\l PLlinewidths [full width at ‘half maximum
’ N ) WHM) ~18 meV for Iny o¢Gay 94ASp 9Np o1 at 10 K] are
gases. The npmmal In and N molar fre}ctlons_were 0.03 an ell described by an alloy fluctuation modaf2
0.01, respectively. The In/N incorporation ratio of three has

b h i ide latti tch to GRS The temperature dependence of the time-integrated PL
€en snown 1o provide 1atice maich 1o nS grown, spectra also provides evidence of exciton localization. Figure
the unintentionally doped InGaAsN film wastype. After

. ~ . 2 shows PL spectra acquired for sample temperatures from
growth, the sample was annealed at 600 °C for 30 min in 40 to 150 K along with indicated peak positions. A pro-

nitrogen ambient in order 'FO improve t_he electrical and oIOti'nounced blue-shift of the PL is observed as the sample tem-
cal properties of the materiaPhotoluminescencéL) M3~ nherature is raised from 10 to 50 K. This blue-shift diminishes
surements for various sample temperatures and excitation iy, 4 reverses to the expected red-shift for temperatures above
tensities were performed with the sample mounted on a coldg kA similar temperature dependent behavior has previ-
ously been observed for InGaN luminescence and is due to
3Electronic mail: jiang@phys.ksu.edu localized exciton effect§*1*For the Ga-rich, InGaN system,
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FIG. 3. Emission energy dependence of the temporal PL decay at 10 K. A
Energy (eV) time-integrated emissigx spgctrum is also showr?. The inset sr)llows the PL
decay at 1.228 eV and the system response to a 10 ps laser pulse.
FIG. 1. PL spectra at 10 K from the InGaAsN sample measured for various
excitation intensitiesl,.. The indicated peak and half-maximum positions
show that blue shifting and broadening occur with incredsed is more related to carrier dynamics than to a thermal equilib-

rium distribution.

exciton localization is attributed to fluctuation of indium Figure 3 shows the measired PL decay ime as a func-

content within the alloy>*®Qualitatively, a blue shift can be tion of emission energy for the InGaAsN sample at a tem-
understood as a temperature related change of the avera@%rature of 10 K. Also shown, is a representatlye emission
kinetic energy and distribution of excitons within the expo- pectrum. The.sample was pumped with an excitation inten-
nential tail of the DOS. However, a localized exciton distri- sity of 1 =0.1l, in comparison with the data of Figs. 1 and 2.

bution may be energetically and spatially frozen at 10 K, andylle inset of Fig. 3 ShO\.N.S an example of a PL decay near the
discussion of thermal equilibrium may be inappropriate for spectral peak positiofl.228 eV and the system re-
our results. As described later, it is likely that the blue-shiftSPO"S€ tO the laser pulse. All of the measured decays were
predominantly single exponentialk(t)=1,exp(-t/7). The
exciton decay timeg, was strongly energy dependent and
T . — T . T . varied over the range 0.07-0.34 ns. This lifetime is consid-
erably shorter than low temperature exciton lifetimes ob-
served for high purity GaA$ and room temperature minor-
ity carrier lifetimes in surface-free GaA8 The shortened PL
lifetime observed for InGaAsN could result in lower solar
cell open circuit voltages and reduced power efficiencies.
Also, short lifetimes in InGaAsN lasers could lower radiative
efficiencies and increase threshold currents over similar
GaAs devices.
The emission energy dependence of the PL decay is
characteristic of a distribution of localized excitdfi$° De-
cay data in Fig. 3 are fit with the function

7(E)=mr/{1+exd a(E—E.) ]}, (1)

Intensity (a.u.)

which includes pathways for either exciton recombination or

transfer out of the localized state with energy*® In Eq. (1),

E,, is defined by Ouesldfl as the energy where the recom-

bination rate equals the transfer rate. The maximum decay
— T lifetime is 7 and « is @ model dependent energy scale. The

1.20 1.22 1.24 1.26 1.28 decay channel is predominantly radiative for the lowest en-

ergy (E<E,), strongly localized excitons, while higher en-
Energy (CV) ergy (E>E,,) excitons exhibit a shortened decay time due to

FIG. 2. Temperature dependence of the InGaAsN Pl spectrum. Peak posﬁranSfer out of their sites. From the least squares fit Of(E)q
tions of individual spectra are indicated with vertical lines. to the data In Fig. 3, we find a value at 1.237 @wicated in
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From a macroscopic viewpoint, these channels would com-
pete more efficiently with the longer-lived excitons on the
low energy side of the PL spectrum and produce a blue-shift.
Alternatively, introduction of nonradiative channels with in-
creased temperature could result in a blue-shift if such chan-
nels compete with the transfer of higher energy excitons into
lower energy localization sites. On the other hand, we expect
that the other nonradiative recombination channels have a
much weaker emission energy dependence than the exciton
transfer into lower energy localization sites.

In conclusion, time-resolved photoluminescence spec-
troscopy has been employed to study carrier dynamics in an
INnGaAsN (1% N) epilayer. Results show that low tempera-
ture PL emission is dominated by localized exciton recom-
bination, and measured recombination lifetimes are shorter
than the corresponding GaAs exciton lifetimes. The observed
localization is believed to arise from alloy fluctuations, and
InGaAsN incorporating larger levels of N than this sample
will exhibit even stronger localization effects and shorter re-
combination lifetimes, possibly degrading the performance
of minority carrier devices and lasers.
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